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Wavenumbers of Goubau Lines

JOHN G. FIKIORIS AND JOHN A. ROUMELIOTIS

Abstract—The cutoff wavemrmbers k=. of the sorface wavemodes in a

Gmrbau ~me are determined by a procedure that leads directly to the

eigenvaiue equation in the limit of zero values for the wavemrmber of the

hfiiite exterior medium. The same resrdt bas beeu obtained by a much

longer procedure based on an extension of prevfous methods used in

correction with simple diektric wavegufdes. Numericaf resufts and re-

lated curves for aff types of modes are afso included.

I. SOLUTION OF THE EIGENVAL,UE EQUATION

T HE WAVEGUIDE is shown in Fig. 1. The radius of

the conductor is R,, and the radius of the dielectric

cladding with dielectric constant ●1 is R2. The modes, in

general, are neither TM nor TE, but hybrid, having both

E, and Hz (longitudinal) components. They are called EH

and/or HE modes [ 1]–[6].

Denoting the coordinate of a general point P by r, (?,z,

we have the following expressions for E=(P)= E=(r, 0):

E=(P)= { [An.ln(kr)+ BJvn(kr)] Cos (no)

+ [ C.J.(kr)+ DnN.(kr)] sin (nO)}

. exp i(tit – /32), n> O,Rl<r<Rz (1)

E=(P)= [A~H.(iyr) cos (nO)+ B~H.(iyr) sin (M)]

oexp i(ot – ~z), n>O, r>R2 (2)

where J., N. are the usual cylindrical Bessel functions, H.

is the cylindrical Hankel function of the first kind, ~ is the

propagation constant, and k is the cutoff wavenumber.

The relations between ~, y, k are

yz=~z_kz
2 k;= U2CZp2 (3)

kz=(e– l)k~–y2 E= E,/E2. (4)

Expressions identical to (1) and (2) can be written for

HZ(P) by using small letters a., bn, b~, etc., for the

coefficients.

Satisfaction of the boundary conditions at r= Rl and

r = R2, which require continuity of tangential E- and

H-field components, yields a system of twelve homoge-

neous equations for the coefficients. For nontrivial solu-

tions, the determinant of this system must vanish. This

provides the eigenvalue equation from which the cutoff

wavenumbers kn~ can be determined.

This eigenvalue equation has the form [4]:

(“”6E, E2

R,

Fig. 1. The cross section of the guide.

[

cR2y2 M’ H~(iyR2)
— -.X

k M. + ‘YR2 Hn(iy&)
1

where

L; =J;(x,)N;(x,) -J;(x,)N;(xz)

L. =J.(X2)N;(XI) ‘J;(x1)Nn(x2) (6)

M; =J;(x2)Nfi(x1) –Jn(x1)N;(x2)

M~=Jn(x2)Nn(x1) –J~(x1)Nn(x2) (7)

xl=kRl

X2= kR2. (8)

We shall find the solutions of (5) in the limit y~O,

corresponding to the cutoff condition. As pointed out in

[4], a more practical cutoff condition for sufficient field

confinement should be determined rather by yR2 >0.001.

Further relative discussions and results can also be found

in this basic reference. Here, however, we proceed by

applying a Maclaurin expansion to (5) for small y [5], [6].

In this way, we quickly obtain the general solution of (5)

at cutoff without any restrictions on the values of the

parameters, Thus for small y:

H{(iyR2) ~yR2
iyR2 =–l+~y2R~ln7 r= 1.781072

H1(iyRJ

(9)

H~(iyR2) y2R;
iyR2

H~(iyR2) = ‘n–2(n–1)
+O(yq), n>l. (10)
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, ~’k; (y’+ k;)k;
n’(c – 1) — =n’(t– 1)2

k4 [(A) k;-y2]2

R2y2 M; H~(i-yR2) =0
—.

c k MO + ‘YR2 HO(iyR2) ‘
TMO~ or EO~ (116)

Substituting in (5) and using (10) and (11) we find for

small y and n >1:

[

y2R:

1

R2y2 L; ~ y4R;
——

+ ‘2(n–1) ‘n k L. 4(n–1)’

+n’+ ~ =n’+ ‘6+1)n~ -f ’i-O(y’). (12)
(~-l)k2

After canceling n’ from both sides, and multiplying (12)

by (k2M.L.)/(y2), we find in the limit y-+0:

cx2M~L~( – n) + ( – n)x2L~Mn

+ *M~L~ –(e+ l)n2LnMm =0
n–1

or

CX2M; L. + X2L; M.

—

[ 1-#y –(e+ l)n L#4H=0, n>l (13)

‘If n =1, an equation similar to (12) is obtained, but in

place of (10) we must use (9). Eliminating again the

constant term (1 in this case), and multiplying both sides

of the equation by

k2M1L,. .
FyR2

y’ in ~

we find in the limit yaO:

—
&2 [cx2M{L, +xzL{M, +MIL,(c+ 1)]

In ~

-.x;L,M, =0. (14)

As y~O the term in (ryR2/2)~ – cc, so in order to satisfy

(14) the product x~L,M, must vanish:

X2=0 L1=O M1=O

or from (6) and (7)

k= O(HEII)

J,(+’J{(X,) – J((~J~,(4 =07 HE,~, m >1

Jl(x’)~l(xl) –Jl(x,)Nl(x’)=o> EHl~, m> 1. (15)

When n = O the right-hand side of (5) vanishes. In this

case, we obtain two separate and independent eigenvalue

equations corresponding to pure TM and TE modes:

For small values of y

H~(iyR2) 1
iyR2

Ho(iyR2) = in (1’yR2/2)

and (16) becomes

(18)

(19)

Therefore,

MO=O or JO(X2)NO(X1) – JO(X1)NO(XZ) =0,

TMo~ or Eo,,: (:!0)

Similarly the solution of (17) in the limit y = O is

Lo= o Or ~o(.-+v((x~)‘~;(x~)~o(x’) = 0,

TEo~ or Hom. ~!l)

Exactly the same results were found also following an

extension of the laborious method used in [ 1]–[3] for

simple dielectric waveguides. In particular, the abbrevia-

tions

[1

J+. ~ n–x2!# [1J-=~ n+X2$
x; n x; n

[1N+.~~–x2~ [1 L;
N-=-!- n+x2Z

x; L. x; n

H+_ 1 H.+1(iyR2) ~_=_ 1 H._ ,(iyR2)

iyRz H.(iyR2) iyR2 H.(iyR2)

are the proper ones to use to reduce (5) to (13) or (15) for

n >2 or n = 1, following the very long procedure based on

such symbols, and developed in [1], [2]. We notice also,

that the simple procedure of expanding both sides of the

original eigenvalue equation in as many powers of y as

necessary (the first two suffice) developed here is applica-

ble to the simpler problems of [1]-[3], and in a straig~t-

forward manner yields the same results as theirs.

It should also be mentioned that in the limit RI +0 all

our results reduce anal ytically to the corresponding ones

for the simple dielectric rod [1], [3].

H. NUMERICAL RESULTS

In Tables I–III we give the cutoff values Xz = kRj of

certain Goubau lines. For n = O, 1, the results are indepen-

dent of e. The cutoff frequency of the HE1 ~ mode is again

O, as seen from (15). The designation HElm or EHlm for

the n = 1 modes in (15) is adopted as an evident extension

of the corresponding designations in (20) and (2 1), i.e.,

HE corresponds to TE or H modes and EH to TM or E
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Fig. 2. Modal loci of r versus kzllz for c = 1.1. Fig. 3. Modal loci of r versus k2R2 for c = 2.56.

TABLE I
V.ucms OF X2 FOR r= R1/R2=0.7

i

m= 1 m= 2 m= 3 m= 4

n=O 5.6188301 15.846498 26.263696 36.711868
0 10.455235

TE
20.935466 31.410255 41.883644

1
TM

0.0000000 5e 7614168 15,892475 26.291096
1 100

HE
522032 20.969386 31.432936 41.900673 EH

. --- -- - . .- - -- - - - -- -- - - - -- - - - - - - - - - - - - - - - - - - - - -- -- - - -. . - -- -- --
2 ‘3.3235439 6.5833374 11-447004

----!
16.229897

3 4 .7582362 7.4430970 12-332795 16.640061
c=2.56

------ - - -- - - - - - - - - - - - - - - - - - - - - - -- - - - - - - -- - - - - -- -- - .. -- - -- - - . EH

2 3.7861071 6.5786861 11 @804340
HE

16-229639
3 5.1941428 7.4294928 12*873836 16.639063 E= 4

TABLE II
VALUESOFX2FOR r=R1/R2=0.8

r J

m= 1 m=2 m= 3 m=4

~= o 8.2121663 23.687132 39.345330 55.031805 TE
o 15.698088 31*410962 47.120577 62.829367 2M
1 0,0000000 8.2945213 23,713813 39.361280
1 15.737552 31.430815 47.133827 62.839309 HE

EH
------ -. ------ - - -- - - . . . - . .- .. _- -- - - - - - ___ ____ _ --- . ------- -----

2 3.84bg4gf3 9.0393070 16.617t58 23.999615
3 5.4027881 9.83?2407 17*467882 24.330011 c=2.56

------ - - - - -- - - - - - - - - - - - - - - - - - _ _- - - -_ - - _- _ ___ _ _ _- __ .______ __ L Ii

2 40 4931387 9.0380297 17.009093 23.999547 HE

3 6* 0740286 9.8043928 18,123385 24.32974~ E=4

TABLEIII
VALuEsoFx2FoRr=R,/R2=0.y

* I

m= 1 m= 2 nr=~ m= 4

n=O 16.044864 47.238528 78.608717 11O* 00498 TE
o 31,411513 62.829643 94.246306 125. 66260 TM
1 0 .0000000 16-080907 47-250348 78.615798 HE
1 31- 429164 62s 838481 94-252200 125- 667o2 EH

------ - -- - - -- -- -- - - - - - - - - _ - _ _ __ __ __ _ - _ _ __ - - __ _- - _ - . . -- _ - - -_*- -
2 5.2068404 16.766003 32*273123 47*495533
3 7-2713189 17.463501 33.103361 47.761411

E=~*~~

------ - -- - - - - -- - - - - - - - -- - - - - - -_ - - - _ _ - __ _ _ _ _ _ _ _ _ _ _ _
2 6.2779388 16.7G5814 32.699290 47,495525

---------- EH

3
F=4

8.5490545 17.462803 33*888957 47.761381
HE

50
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A Study of Waveguides for Far Infrared
Interferometers Measuring Electron Density

of Tokamak Plasmas

JEAN PIERRE CRENN

Abstract-In the O.1–l-mm wavelength range, wavegoide propagation

offers some advantages over opticaf propagation in mrdticfmmel infrared

interferometers meaaorfng electron density of Tokamak plasmas. In this

paper, the necessary conditions for use of waveguides for this porpnse are

de~med. Possible wavegoides are theoretieafly and experimentally stodie@

tafdng into account their shape, sizq materiaf, and length. It is shown that

it is pssible to find waveguides well soited for these interferometers.

These resufts can also be appfied to other far infrared interferometers and

devieea.

B

ECAUSE OF

tron density

I. INTRODUCTION

refraction effects measurement of elec-

with multichannel interferometers in

large Tokamaks requires the use of infrared radiation

rather than microwaves [1 ]–[3]. For example, an eight-

channel interferometer is in operation on the TFR

Tokamak, using a wavelength of A= 0.337 mm [4]. Up to

now infrared interferometers have used free-space propa-

gation of beams. However, in large Tokamaks, beam

paths are several meters long, and, therefore, require the

use of large optical components due to beam deviation

and divergence effects which are always present. A wave-

guide device would be less sensitive to these undesirable

effects, and moreover, would be easier to realize [5].

However, waveguide propagation must satisfy two essen-
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Fusion Contr616e, Cent\e d’Etudes Nuc16aires, Association Euratom-

CEA sur la Fusion, Bolte Postale no. 6, 92260 Fontenay-Aux-Roses,
France.

tial conditions:

1) the propagation must avoid excessive losses,

2) the wave polarization (i.e., the direction of the elec-

tric field lines) must be linear [4].

These conditions must be satisfied even for small devia-

tions of the beam direction at the input of the waveguide.

Here we will study several waveguide structures in (he

0.1 – l-mm wavelength range, since this is the interesting

range for interferometers used on large Tokamaks.

II. CHOICE OF WAVEGUIDE STRUCTURE

Among the different possible waveguides, optic fibers

and open or closed H guides [6]–[8] are less attractive

than oversized closed waveguides (i.e., hoIlow waveguides

with dielectric or metallic walls), for two reasons.

1) Open waveguides radiate some energy and this may

result in stray signals in neighboring waveguides.

2) Attenuation in these waveguides is not as small as

that of greatly oversized waveguides, because a part of the

wave propagates inside a dielectric which always has some

loss.

Among oversized closed waveguides, it is possible to

make a distinction between those having dielectric walls

and metallic walls. For most metals at microwave and far

infrared wavelengths it is possible to neglect the real

component of the refractive index and, therefore, consider

only the imaginary component when calculating the

attenuation. In the case of a dielectric, such as ordinary

glass [10], it can be shown that for the lowest order mode
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