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Cutoff Wavenumbers of Goubau Lines

JOHN G. FIKIORIS anp JOHN A. ROUMELIOTIS

Abstract—The cutoff wavenumbers k,,, of the surface wavemodes in a
Goubau line are determined by a procedure that leads directly to the
eigenvalue equation in the limit of zero values for the wavenumber of the
infinite exterior medium. The same resuli has been obtained by a much
longer procedure based on an extemsion of previous methods used in
connection with simple dielectric waveguides. Numerical results and re-
lated curves for all types of modes are also included.

I. SoLuTiON OF THE FIGENVALUE EQUATION

HE WAVEGUIDE is shown in Fig. 1. The radius of
the conductor is R;, and the radius of the dielectric
cladding with dielectric constant ¢, is R,. The modes, in
general, are neither TM nor TE, but hybrid, having both
E, and H, (longitudinal) components. They are called EH
and /or HE modes [1]-[6].
Denoting the coordinate of a general point P by r,6,z,
we have the following expressions for E,(P)=E,(r,0):

E.(P)={[A,J,(kr)+ B,N,(kr)] cos (nf)

+[ C,J,(kr)+ D,N,(kr)] sin (nf)}

-exp i(wt—pBz), n>0,R <r<R, ()
E,(P)=|A},H,(ivyr) cos (nf)+ B, H,(iyr) sin (nd)]
n>0,r>R, 2
where J,, N, are the usual cylindrical Bessel functions, H,
is the cylindrical Hankel function of the first kind, 8 is the

propagation constant, and k is the cutoff wavenumber.
The relations between 8,v,k are

Y’ =B%—k3

-exp i(wt — Bz),

®)

2.2
ky=we,

kK=(e—Dki=v* e=¢/e, 4)

Expressions identical to (1) and (2) can be written for
H,(P) by using small letters a,, b, b, etc., for the
coefficients.

Satisfaction of the boundary conditions at r=R, and
r=R,, which require continuity of tangential E- and
H-field components, yields a system of twelve homoge-
neous equations for the coefficients. For nontrivial solu-
tions, the determinant of this system must vanish. This
provides the eigenvalue equation from which the cutoff
wavenumbers k,,,, can be determined.

This eigenvalue equation has the form [4]:
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Fig. 1. The cross section of the guide.
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where
L, =7 (x) N, (x,) = J,;(x) N, (x,)
L, = J,(x2) N, (1) = J1(x ) N, (x,) (6)
M, =J(x)N,(x) =T, (x)N;(x;)
Mn =Jn(x2)Nn(xl) _Jn(xl)Nn(XZ) (7)
x,=kR,
x,=kR,. (8)

We shall find the solutions of (5) in the limit y—0,
corresponding to the cutoff condition. As pointed out in
[4], a more practical cutoff condition for sufficient field
confinement should be determined rather by yR, > 0.001.
Further relative discussions and results can also be found
in this basic reference. Here, however, we proceed by
applying a Maclaurin expansion to (5) for small ¥ [5], [6].
In this way, we quickly obtain the general solution of (5)
at cutoff without any restrictions on the values of the
parameters. Thus for small y:

Hl’(l‘YRZ) 1 2p2 FYR2
1 ——— = — ]+ —y°Rf{ In ——= I'=1.781072
g ZHl(iYRZ) 2Y 2 2
9
H, . R 2R2
AR e TR Lo, n>1 (10)

MRy T 2= D)

For small y and with the use of (3), (4) the right side of
(5) becomes
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(r*+K)k3
[(e-DK-7’T
(e—1)i3

Substituting in (5) and using (10) and (11) we find for
small y and n>1:

B

2
n¥(e—1) kj =n*(e—1)

r+0(v). (D)

R}y ML, Ry’ M;| ¥R}
2 MLk M| 21 "
o YRR L YRS
2(n—1) kL, 4n-1y
2R2n 2
+n2+li=n2+£f+—l)iy2+o(y4). (12)

n—1 (e—1)k?

After canceling n? from both sides, and multiplying (12)
by (k°M,, L,) /(v?), we find in the limit y—0:
ex,M,L (—n)+(—n)x,L M,

n
x3n

+n—l

M,L,~(e+1)n*L,M,=0

or
e, M, L, +x, L, M,

X3
n—1

If n=1, an equation similar to (12) is obtained, but in
place of (10) we must use (9). Eliminating again the
constant term (1 in this case), and multiplying both sides
of the equation by

—(e+ 1)n}L,,M,,=O, n>1 (13)

KM, L,
T'yR
2 2
v°In 5
we find in the limit y—0:

1
- —_TyR [ex;M{L,+x, LM+ M L(e+1)]
h’l _72

~x3L,M,=0. (14)

As y—0 the term In (T'yR, /2)— — 0, so in order to satisfy
(14) the product x3L, M, must vanish:

x,=0 L,=0 M,=0
or from (6) and (7)
k=0(HE,,)
J{(x%)N{(x) —J{(x)N,(x,) =0, HE,, m>1

Ji(x) Ny (x) = T1(x) N (x,) =0, EH,,,m>1. (15)
When n=0 the right-hand side of (5) vanishes. In this

case, we obtain two separate and independent eigenvalue

equations corresponding to pure TM and TE modes:
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Ry* My Hy(iyR,)
— —— =) T™,,, or E, 16
€ k Mo Y 2 Ho(lsz) b Om T Oom ( )
Ryy* Ly . - Hi(ivRy)
— +iyR,——— = .
For small values of y
*H, olivyRy))  In(TYR,/2)
and (16) becomes
kM,
Therefore,
My=0 or Jy(x3)No(x;)—Jo(x,)No(x,) =0,
™, or £E,. (20)
Similarly the solution of (17) in the limit y=0 is
Ly=0 or Jo(x;)Ng(x,)—J5(x,)No(x,) =0,
TE,, or H,,. (21)

Exactly the same results were found also following an
extension of the laborious method used in [1]-[3] for
simple dielectric waveguides. In particular, the abbrevia-
tions

1 M/ 1 M/
J Y= n—x 1 J T -+ n
X3 ' M, } 2",
1 L, i L
Nt=—|n—x,~— N =—|n+x,—2
x2 [ ’L, } x2 ’L,
+ 1 Hn+1(iYR2) - i Hn—l(iYRZ)
iyR, H,(iyR,) ivyR, H,(ivR,)

(22)
are the proper ones to use to reduce (5) to (13) or (15) for
n>2 or n=1, following the very long procedure based on
such symbols, and developed in [1], [2]. We notice also,
that the simple procedure of expanding both sides of the
original eigenvalue equation in as many powers of y as
necessary (the first two suffice) developed here is applica-
ble to the simpler problems of [1]-{3], and in a straight-
forward manner yields the same results as theirs.

It should also be mentioned that in the limit R,—0 all
our results reduce analytically to the corresponding ones
for the simple dielectric rod [1], [3].

II. NUMERICAL RESULTS

In Tables I-III we give the cutoff values x,=kR, of
certain Goubau lines. For n =0, 1, the results are indepen-
dent of €. The cutoff frequency of the HE,, mode is again
0, as seen from (15). The designation HE,,, or EH,,, for
the n=1 modes in (15) is adopted as an evident extension
of the corresponding designations in (20) and (21), i.e,
HE corresponds to TE or H modes and EH to TM ar E
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Fig. 2. Modal loci of r versus kR, for e=1.1.
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Fig. 3. Modal loci of r versus k,R, for €=2.56.
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TABLEI
VALUES OF x, FOR r=R;/R;=0.7
m=1 m=2 m=3 m=4
n=0 5,6188301 15,846498 26,263696 36,711868 TE
0 10,455235 20,935466 31,410255 41,88364%4 ™
! Yo_0000000 5,7614168 15,892475 26,291096 iE
1 10,522032 20,969386 31,432936 41,900673 EH
e o e e Gy G W S S e ML I N I GEr R IR G M GRS G S WD hm MM GRS s W G G GU SN ED WEY GER G v e MR ST G Wme D G MR GED GUR VEP SR GEp Gl I SNS MEn GED GED emn Ges - e -
2 3235u39 6,5833374 11,L4700% 16,229897 £€=2.56
3 .7582362 7,4430970 12,332795 16,6u40061
S gy gt ISRt 9 - ¢
2 |3,7861071 6,5786861 11,804340 16,229639 e=4 HE
3 |5,1941428 74294928 12,873836 16,639063
TABLE II
VALUES OF x, FOR =R, /R,=0.8
m=1 m=2 m=3 m=4
n=0 |8,2121663 23,687132 39,345330 55,031805 TE
0 15,698088 31,410962 7,120577 62,829367 T™
1 o,ooooooo 8,2945213 23,713813 39,361280 HE
1 15,737552 31,430815 7,133827 62,839309 EH
- e - e me e - a - —— - —— -~ — ————— - - - ——— =
2 |3, 8u4u3490 9_,0395070 16,61755¢8 23,999615 1
3 |s5,u4027881 9.3092uo7 17,467882 24 _,330011 £€=2.56
"""'““'4' “““““ hnhahatbe St hesa e i et B it LH
2 |4,4931387 9,0380297 17,009093 23,999547 HE
3 |6,07402856 9,8043928 18,123385 24329746 €=4
TABLE I
YALUES OF X, FOR r= R,/ R,=0.9
m=1 m=2 m=3 mn=4
n=0 |16,044864% 47,238528 78,608717 110,00498 TR
0 31,411513 62,_,829643 94_246306 125,66260 ™
1 0,0000000 16.080907 ‘07.250348 78, 615798 HE
1 31 ,42916%4 62,838481 9L,252200 125,66702 EH
e - . e —_—— - —— -~ —_—— - — - ————— > ——— - s - = "— o= == - oo =]
[ 2 [5,2068u04 16,766003 32,273123 47_ 495533 €=2.56
3 |7,2713189 17.463501 33,103361 47,761411 o
G T T R et = e G G 0 G G = S W W G B S e - - — - —— o —— - ——— ——— o} o - W e . - EH
6,2779388 16,765814% 32,699290 7,495525 c=14 HE
3 |8,5430545 17_4628603 33_8683957 47,761381 i
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modes. For n>2 the cutoff wavenumber is unique and
can be designated as either EH or HE.

In Figs. 2 and 3 modal loci are drawn providing the
variation of r= R, /R, versus k,R, for various values of €.
As r—1 the cutoff values k,R, tend to oo, as expected for
the case of a perfectly conducting rod.
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A Study of Waveguides for Far Infrared
Interferometers Measuring Electron Density
of Tokamak Plasmas

JEAN PIERRE CRENN

Abstract—In the 0.1-1-mm wavelength range, waveguide propagation
offers some advantages over optical propagation in multichannel infrared
interferometers measuring electron density of Tokamak plasmas. In this
paper, the necessary conditions for use of waveguides for this purpose are
defined. Possible waveguides are theoretically and experimentally studied,
taking into account their shape, size, material, and length. It is shown that
it is possible to find waveguides well suited for these interferometers.
These results can also be applied to other far infrared interferometers and
devices.

I. INTRODUCTION

ECAUSE OF refraction effects measurement of elec-

tron density with multichannel interferometers in
large Tokamaks requires the use of infrared radiation
rather than microwaves [1]-[3]. For example, an eight-
channel interferometer is in operation on the TFR
Tokamak, using a wavelength of A=0.337 mm [4]. Up to
now infrared interferometers have used free-space propa-
gation of beams. However, in large Tokamaks, beam
paths are several meters long, and, therefore, require the
use of large optical components due to beam deviation
and divergence effects which are always present. A wave-
guide device would be less sensitive to these undesirable
effects, and moreover, would be easier to realize [5].
However, waveguide propagation must satisfy two essen-
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tial conditions:
1) the propagation must avoid excessive losses,
2) the wave polarization (i.e., the direction of the elec-
tric field lines) must be linear {4].

These conditions must be satisfied even for small devia-
tions of the beam direction at the input of the waveguide.
Here we will study several waveguide structures in Lhe
0.1-1-mm wavelength range, since this is the interesting
range for interferometers used on large Tokamaks.

II. CHOICE OF WAVEGUIDE STRUCTURE

Among the different possible waveguides, optic fibers
and open or closed H guides [6]-[8] are less attractive
than oversized closed waveguides (i.e., hollow waveguides
with dielectric or metallic walls), for two reasons.

1) Open waveguides radiate some energy and this may
result in stray signals in neighboring waveguides.

2) Attenuation in these waveguides is not as small as
that of greatly oversized waveguides, because a part of the
wave propagates inside a dielectric which always has some
loss.

Among oversized closed waveguides, it is possible to
make a distinction between those having dielectric walls
and metallic walls. For most metals at microwave and far
infrared wavelengths it is possible to neglect the real
component of the refractive index and, therefore, consider
only the imaginary component when calculating the
attenuation. In the case of a dielectric, such as ordinary
glass [10], it can be shown that for the lowest order mode
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